If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2=810
We move all terms to the left:
40x^2-(810)=0
a = 40; b = 0; c = -810;
Δ = b2-4ac
Δ = 02-4·40·(-810)
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-360}{2*40}=\frac{-360}{80} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+360}{2*40}=\frac{360}{80} =4+1/2 $
| x-7+4x=3x+9x-28 | | 2x=9x+56 | | 25-7x=13-5x | | 5x+12+28=90 | | 2(1-f)=+5 | | 3x=3.1415926535 | | 7^(3x)=623 | | 4(e+8)=68 | | (40-x)/40=0.35 | | (27-x)/27=0.35 | | 2/3y+1/2(y-3)=(y+1)/4 | | 5(m-3)-2m=7 | | 3(x-2)+2(x+5)=21 | | 7a-2(3a+1)=5 | | 2(b+3)-(b-4)=15 | | 5(x-1)-3(x+2)=4 | | (2x-50)+(x+30)=180 | | 9y-5=41 | | -5(c-3)-(5-c)=0 | | 3^(n+4)=27^2n | | 10x+15x=5x+45 | | 140*x=220 | | 2x+3/5=3x-7/6 | | y^=-9 | | -2+7(2x-4)=-30 | | -7-6(7x-7)=47 | | 56/2c= | | 3*x*x=2*x*x+50 | | 3*x*x=2*x*(x+50) | | 3*x=2*(x+50) | | x*x+2000x=5000 | | x*x+160x=8000 |